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Axioms for Quantum Theory 
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The first three of these axioms describe quantum theory and classical mechanics 
as statistical theories from the very beginning. With these, it can be shown in 
which sense a more general than the conventional measure theoretic probability 
theory is used in quantum theory. One gets this generalization defining transition 
probabilities on pairs of events (not sets of pairs) as a fundamental, not derived, 
concept. A comparison with standard theories of stochastic processes gives a 
very general formulation of the non existence of quantum theories with hidden 
variables. The Cartesian product of probability spaces can be given a natural 
algebraic structure, the structure of an orthocomplemented, orthomodular, quasi- 
modular, not modular, not distributive lattice, which can be compared with the 
quantum logic (lattice of all closed subspaces of an infinite dimensional Hilbert 
space). It is shown how our given system of axioms suggests generalized quantum 
theories, especially Schr6dinger equations, for phase space amplitudes. 

1. I N T R O D U C T I O N  

In rather  long treatises written in German ,  I developed systems of  axi- 
oms for  classical mechanics and qua n t um  mechanics (Gerlich, 1974, 1977). 
Later,  I tested them in courses o f  lectures in theoretical physics (Gerlich, 
1980, 1983, 1987b, 1991). In the meantime,  I found modifications and simpli- 
fications in the formulat ion o f  the axioms. In particular, I could give a more  
general formulat ion for  the nonexistence o f  quan tum theories with hidden 
variables containing all nonexistence theorems known to me (Gerlich, 1977, 
1987b). 

I f  one tries to formulate  the mathemat ical  foundat ions  o f  a physical 
theory axiomatically,  one at once provokes  the critical question o f  what  n e w  

experimental results are predicted by this theory. On the other  hand,  if 
one presents an improved mathematical  me thod  to describe certain physical 
processes, one is asked to show how the convent ional  (worse) methods  could 

~Institut fiir Mathematische Physik der Technischen Universit~t Carolo-Wilhelmina, 3300 
Braunschweig, Germany. 

1103 

0020-7748/92/0700-! 103506.50/0 �9 1992 Plenum Publishing Corporation 



1104 Gerllch 

give the same results. Were this kind of criticism the exception and not the 
rule, one would not have to take any trouble with this. A system of axioms 
of quantum theory fulfils the task of laying down (restrict) the general 
properties of the mathematical structures of quantum theory. It shouMjust 
yield no other theory than quantum theory. This does not mean, of course, 
that a system of axioms could not give hints where appreciable modifications 
of a theory are possible. It is for this very purpose that most such investiga- 
tions are carried out. Moreover, the usefulness of an axiomatic formulation 
of a theory lies in the fact that the theory is summarized in a few sentences. 
This is well known to everyone who has given an axiomatic introduction to 
classical mechanics. 

Axioms of a physical theory mean a restriction of the mathematical 
possibilities. They cannot be proven. But it is possible to make them clear 
or plausible. This means that one could try to show the usefulness and 
simplicity of the selected mathematical structures. For the arrangement of 
the axioms, this has as a consequence that the plausibility of the axioms 
should decrease with the progressive restriction of the mathematical possibil- 
ities. I hope that the given system of axioms satisfies this criterion. 

Restricting the general mathematical properties, nobody will be success- 
ful with the attempt to include all properties completely. This means that, 
in principle, such a system of axioms can never be complete and one must 
always live with the questions: Did one disregard essential properties of 
quantum theory? Are important fields of the theory excluded by the mathe- 
matical restrictions? Is this theory, fixed by the general statements, really the 
whole quantum theory? Viewed from this standpoint, the new arrangements 
and formulation of the axioms should have advantages. 

The axioms (AI)-(A3) contain classical mechanics and quantum 
theory. For Newtonian mechanics one can read them as "preaxioms" which 
were and are used more or less consciously because no other mathematical 
possibilities were taken into account. On the other hand, for quantum theory, 
it is necessary to write them down because they allow one to explain the 
differences from classical mechanics. With them, it is possible to formulate 
in what sense a more general than the usual measure-theoretic probability 
theory is used in quantum theory. This gives the relation to the quantum 
logical systems of axioms and a simple nonexistence statement for quantum 
theories with hidden variables: The usual theory of stochastic processes 
provides formulas for transition probabilities that are too special. Further- 
more, these preaxioms (A1) and (A2) suggest a more likely justifiable formu- 
lation of the superposition principle of quantum theory (AQSP). 

The subsequent axioms (AQSI) and (AQS2) are typical of quantum 
theory and are not valid for classical mechanics. It is possible to formulate 
the corresponding axioms for classical mechanics (including relativistic 
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mechanics of noninteracting mass points). The axiom (AMN1) corresponds 
to the first and (AMN2) to the second Newtonian axiom. From this parallel, 
a n  estimation of the corresponding quantum mechanical axioms can be 
deduced. As little as the first two Newtonian axioms describe each specific 
mechanial system completely, so as little do the axioms (AQS1) and (AQS2) 
describe each quantum mechanical system. I n  particular, d'Alembert's and 
Gauss's principle are missing settling how constraints modify the equations 
of motion of classical mass points. As one can conclude the form of inter- 
actions from Newton's second law and from the Newtonian law of gravity, 
this is similarly possible with (AQS2) and Maxwell's equations in quantum 
theory. There exists a simple parallel formulation of these two axioms fitting 
Lorentz transformations and thus electrodynamics even better. These are 
the axioms (AQD1) and (AQD2) corresponding to Dirac's equation without 
and with external electric fields, respectively. 

2. THE AXIOM (A1) AND THEORIES WITH 
HIDDEN VARIABLES 

The first axiom summarizes two empirical facts: 
(a) Every physical theory is finally tested by the reading of numbers of 

a scale (with error bounds). We call this the observation of events (in the 
decision), where events are elements of a class of subsets of a certain set; in 
this example the observed event is a certain interval of R ~ (real line). 

(b) The value of such measured numbers is physically meaningless if 
one does not know how the experiment was performed. In particular, this 
knowledge could be given by an observed or an assumed event (in the 
condition): an event A which one knows to predict the probability of the 
event B. One could consider the motion of a car on an inclined plane or 
the movement of the planets. The measurements of the space and velocity 
coordinates alone are not physics. Physics begins with predicting the values 
at a later instant of time (with error bounds) with a model. Statements of 
measured values with error bounds are typical probability statements: For 
instance, with probability 0.999 the measured value should be found in a 
certain interval upon performing the experiment in the same way (the same 
event in the condition). 

These plausibility arguments should be enough. For a more detailed 
discussion see Gerlich (1974, 1977, 1987b, 1991). 

(AI) The statements of physics are statements about spaces of events. 
The statements about events are formulated with frequencies, normed 
contents, or probability measures for pairs of events: q(A, B) is the 
probability of observing the event B if one knows the event A. q(A, B) 
is called the transition probability. 
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Spaces of events are sets X, respectively Y, with o'-algebras A, respectively B. 
Elements of o--algebras usually are called measurable sets or, in the measure- 
theoretic probability theory, events. In this sense, in (AI), very conventional 
concepts of the measure-theoretic probability theory founded by Kolmogor- 
off are used (Kolmogoroff, 1933; Bauer, 1974; Kingman and Taylor, 1966). 
Only the concept of the transition probability q(A, B) is introduced as an 
additional fundamental concept and not as a derived concept. In conven- 
tional probability theory, with two spaces of events (X, A) and (Y, B), one 
constructs a new common space of events (X x y, A| X • Yis the Carte- 
sian product of the sets X and Y, A| is the product-o--algebra generated 
by the sets A • B with AsA, BeB (Figure 1). With a probability measure 
on this space one calculates the transition probability as a conditional prob- 
ability. The events A are replaced by A • Y, the events B are replaced by 
X • B. The smallest o--algebra containing {A • B IA cA, BEB} is A| With 
a probability measure P on A| one calculates the transition probability 
as a conditional probability 

P(A • B) 
qcL(A, B ) -  

P(A • Y)  

For disjoint sets A and A' the Cartesian products A x B and A ' x  B are 
disjoint (Figure 1). Therefore one gets 

P((A x B) u (A' x B)) = P(A x B) + P(A' x B), A n A '= (~ 

p((A c) A') • B) 
qcL(A w A', B) - 

P((A w A') x y )  

_ P ( ( A  x B) w (A' x B))  

P((A x y )  w (A'x Y)) 

Y 

• 
"9 

B 

Y 

X' 

Fig. 1 
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p(A x B) p(A' x B) 
P(A x y)  + P(A' • Y) P(A x r )  + P(A' x y )  

= s B)+ s B) 

with s + s = 1 and 0 _  s s  ~--- 1. 
This simply means that, for q(A, B)=a,  q(A', B )=b>a ,  A r~ A '=  ~ ,  

q(A u A', B) can only have values in the interval [a, b]; if a, b are unequal 
to zero, the combined transition probability cannot be zero (no interference). 
One gets the same result if (A, B) can be read as A A B of a common probabil- 
ity space defining qcL(A, B)=  P(A A B)/P(A).  Therefore one gets for class- 
ical transition probabilities: 

(CL) The transition probability of a union of disjoint events in the 
condition is a convex linear combination of the individual classical 
transition probabilities. 

This statement is nothing but a modification of Bayes' formula of conven- 
tional probability calculus (Bauer, 1974, p. 134; Kingman and Taylor, 1966, 
p. 274). The statement (CL) (short of for convex linear combination or 
classical) remains true for an apparently considerably more general formula 
for classical transition probabilities (Gerlich, 1977, 1987b): 

Let x~,(c0) be a family of stochastic processes on one probability space 
(f~, A, P). One could think of a part of the solution curves of a system of 
ordinary differential equations describing a system of mass points, co Ef~ are 
the initial values of all points with a given probability distribution P. In this 
situation one can take as a rather general formula for a transition probability 

i I j - I  Y~,j w~jP(x,, (A) r~ x,2 (B)) 
qcL(A, B ) -  i-' 

~ wip(x,, (A)) 

with 0<wa_< 1, wi=Zj w u, and Z; w~= 1. 
With this formula, too, one can prove the statement (CL) (Gerlich, 

1987b, p. 142). Anticipating the result given later in this paper that the 
formula for quantum mechanical transition probabilities is more general, in 
the sense that (CL) need not be true, we get our statement of the nonexistence 
of quantum theories with hidden variables: A family of stochastic processes 
on one probability space produces too special transition probabilities. The 
whole point of this statement is to be seen in the fact that the richness of 
the structure and the exactness of the quantum mechanical formula, which 
has interference terms, is testably superior to the classical formula. Not 
certain unaccuracy effects, but the fantastically exact probability predictions 
are typical of quantum theory. This fits the historical experience that very 
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exact measurements (spectral lines) were the reason for modifying classical 
mechanics and electrodynamics. 

Essential for these proofs of (CL) is the fact that the family of stochastic 
processes is defined on one probability space. Deriving Bell's inequalities, 
this one probability space is used for the calculation of the classical expecta- 
tion values of the product of two noncommuting observables (see Bell, 1965; 
and Jauch, 1973, but also Barut and Meystre, 1984). With the model of 
stochastic processes one cannot reproduce our formula for the transition 
probability of quantum theory, no matter how extensive the one probability 
space (~, P) of the hidden variables is chosen. For these considerations it is 
not necessary to assume the differentiability of the paths xi(m) with respect 
to t. Most theories with hidden variables for quantum theory known to me 
fall under the given nonexistence statement, especially the one circulated by 
the mathematician E. Nelson 0967, p. 116). How can it be that such an 
excellent mathematician like Nelson, who knows the discussed difficulties 
(Nelson, 1967, p. 129), can support such an insufficient theory? First of all, 
one could deny the general validity of our formula given later in (A2). But 
the interference effects of quantum theory are a generally accepted property 
of quantum-theoretic probability theories. Therefore one needs a better 
explanation. At a first glance the differential equation for the time depend- 
ence of the probability densityft 

~f' + L(f ,)  =0  
~t 

looks like the corresponding equation of a (Brownian) stochastic process. 
Then one thinks that one has found the theory of hidden variables. But 
nobody can prove that this equation uniquely determines one stochastic 
process. For instance, one can define with densitiesfr(x) the product measure 
over all t. Or one solves the equation with a Green's function fi(x0, x) and 
uses the latter as the density of the transition function of a second Markovian 
process. The latter is surely different, as the first has a trivial transition 
function. Usually only for Markovian processes can one conclude the corre- 
sponding stochastic process from the differential equation for the probability 
density of the transition function if the initial value problem for the Green's 
function can be completely solved. But in general, one cannot conclude 
from such a differential equation for a probability density that the process 
producing this equation was a Markovian process. Therefore, instead of 
using one formula for a transition probability, one has to adopt many for- 
mulas for each special physical situation. 

Even if one uses an independent second probability space for the start- 
ing points, one gets (CL) with a general transition function of a general 
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stochastic process: 

qcL(A, B)= 

With A c~ A' = ~5, one gets 

~A P,o(dxo) P(to, Xo ; t, B) 

~ P,o(dxo) 

qcL(A W A', B) 

_SA~A' Pto(dxo) P(to, Xo ; t, B) 

N 

SA P,o(dxo) P(to, Xo ; t, B) +SA, 'P,o(dxo) P(to, Xo ; t, B) 

N 

= ~,1qcL(A, B)+/~2qcL(A', B) 

f ~, = Pto(dxo)/N, )~2 = P,o(dxo)/N 
A '  

0< ,~ ,  ,L2 < 1, ~,~ +~2= 1 

The statement (CL) can be proven even if the stochastic process is defined 
by the n-time distribution functions satisfying Kolmogoroff's compatibility 
conditions. With the theorem of Kolmogoroff (Bauer, 1974, p. 349; King- 
man and Taylor, 1966, p. 381), a canonical stochastic process on one prob- 
ability space exists reproducing the same n-time probability distributions. 
This space is the set of all paths (time functions) of the process. Thus, 
one has constructed a space of hidden variables for the n-time distribution 
functions which can be used to prove (CL). Therefore, all theories with 
hidden variables that use the theory of stochastic processes cannot use the 
standard formula of stochastic processes for quantum mechanical transition 
probabilities, as it does not give interference terms. 

This exposition also shows that one should not be surprised if the 
models of quantum theory and general relativity theory do not fit together 
if the latter is founded on the notion of classical curves of particles. 

Approximately one can always use a classical statistical description, for 
instance, substituting the noncommuting operators of quantum theory by 
approximate commuting operators (Davies, 1976, Chapter 3; Holevo, 1973; 
von Neumann, 1932/1968, p. 215). With the corresponding probability dis- 
tributions one gets no interference effects for the conditional probabilities. 
Our probability formulas of the quantum mechanical models have more 
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structure. Often one states the insufficiency of the classical models in quan- 
tum theory in that they admit dispersion-free ensembles. This immediately 
suggests that the quantum mechanical models were particularly inexact. But 
just the opposite is true. Of course, one can in principle make very precise 
probability predictions with classical models. But, in practice, one does not 
use these precise predictions because they are surely bad! Dispersion-free 
ensembles in the mathematical model cannot guarantee an exact description 
of nature. Just because the models of classical mechanics allow such a precise 
description, they are worse than the models of quantum mechanics. 

In connection with these considerations, one should warn about an 
overinterpretation. The given nonexistence statement tells us which kind of 
theory, the standard theory of stochastic processes or probability theory, is 
not sufficient to get the quantum mechanical formulas for the transition 
probabilities. By no means does this statement say that in some sense the 
quantum mechanical description of nature is perfect or could not be 
improved. Many people overlook this point when discussing the nonexist- 
ence statement of yon Neumann. Von Neumann could not and did not try 
to exclude an improvement, that is, a change of the known quantum theory, 
with his nonexistence statement (von Neumann, 1932//1968, p. 109, 171). He 
only excluded a certain ensemble theory, accepting the given mathematical 
structure of  the existing quantum theot T. In my diction this ensemble theory 
is a rather specific theory of stochastic processes. Theories with hidden vari- 
ables giving formulas contradicting quantum theory or enlarging the applic- 
ability of quantum theory can be given many names, but with certainty they 
are not theories with hidden variables for quantum theory (compare, how- 
ever, Belinfante, 1973). This remark also applies to the "theories with hidden 
variables" that add averaging procedures to the standard apparatus of quan- 
tum theory (Gudder, 1970; Pancovi6, 1989) or our generalized Schr6dinger 
equation on phase space probability amplitudes (Dietert, 1990). In my opi- 
nion, it is a rather cheap trick to show that all nonexistence statements for 
theories with hidden variables for quantum theory are wrong if one changes 
quantum theory especially adding a structure nobody uses in practice 
(Gudder, 1970). 

A typical performance of theories with hidden variables is to make 
calculations that, with the existing quantum theory, cannot be made or are 
less exact. Therefore, our nonexistence statement cannot mean that in future 
a more "microscopic" theory will not be possible for certain applications 
than the existing quantum theory is. With a similar standpoint, one would 
never have found quantum theory after classical mechanics. With respect to 
our considerations, the main difference between quantum theory and class- 
ical mechanics is that the mathematical models of quantum theory give more 
exact probability distributions. Therefore it is clear where future progress of 
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the theory should be looked for: This should be a theory which gives even 
more exact probability distributions. Only the never proved and never prov- 
able assertion that the formulas of classical mechanics have these properties 
produces a fear of such theories. If  our axioms (A 1)-(A3) have some univer- 
sal validity, they should survive such a progress of the theory because they 
are as valid in classical mechanics as in quantum mechanics. The way to 
mathematical models giving more exact probability distributions is not 
spoiled by our nonexistence statement. But one should not use the theory 
of stochastic processes for calculating transition probabilities, as it is even 
now too poor because of (CL). 

3. THE CARTESIAN PRODUCT OF PROBABILITY SPACES 
AND THE QUANTUM LOGIC 

The axiom (A1) contains a certain algebraic structure which can be 
worked out. I called this structure parametrized probability spaces, or para- 
metrized spaces of events (Gerlich, 1977, 1981, 1987b). The probability state- 
ments mentioned in (A1) are statements about pairs of events (A, B), thus 
elements of the Cartesian product A x B of the cy-algebras A and B. Unlike 
classical probability theory, the pairs of events (A, B) are not automatically 
identified with the Cartesian products A x B of the events (sets). Usually 
incompatible events are disjoint sets. Therefore, one could ask how one 
could define the incompatibility of pairs of events. Such a situation is given 
in physical practice if an experimental physicist says that she cannot verify 
the experiment of a colleague because the results of her experiment, which 
is of course much more precise, exclude the results of her colleague. For 
instance, the second had measured 2~z with error bounds excluding Jr, 
whereas the first had measured rc with error bounds excluding 2re. By tacit 
agreement, one assumes, of course, that the second experimental physicist 
had made the same experiment described by the first. With our formulation 
of (AI) this means: If  it should make sense that the events in the decision 
B and B' exclude themselves, then necessarily the event A in the condition 
should be the same. We call this the principle of meaningful comparison: 

(MC) Pairs of events are comparable iff the events in the condition are 
equal. 

With this, one can define in A x B a partial ordering <__: 

(PO) (A, B)_<_(A', B' )  i f f  A = A  ' and B n B ' = B .  

It is easy to check that (A x B, < )  is a partially ordered set. In this set, 
one can define an orthocomplementation •  

(POC) (A, B) ~ = (A,CB). 
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In the usual way, two elements of A • B are called orthogonal or 
disjoint iff 

(A, B ) ~  (A ', B') •  (A ', CB'), resp. A = A'  and B c CB' 

In this orthocomplemented partially ordered set (A • B, <~), in general, two 
pairs of events do not have an infimum or supremum, namely, if the events 
in the condition are not identical. With the following trick this can be 
avoided. One identifies all pairs if the event in the decision is the empty set 
(impossible event) and call it the element 0 of A • B. Then one has to identify 
all pairs if the event in the decision is the total space Y (sure event) and one 
calls it 1. Then 0 is the smallest and 1 is the greatest element of this partially 
ordered set with 0 • = 1 and 1-L = 0. If two pairs of this partially ordered set 
are not comparable because the events in the condition are not equal, then 
their infimum is 0 and their supremum is 1. Because now two pairs of events 
of this partially ordered set (A • B, <~) have an infimum and a supremum, 
one can turn it into a lattice in the usual way, defining ^ as the infimum 
and v as the supremum. This lattice (A x B, ~__~_~ A, V) is orthocomple- 
mented, orthomodular, quasimodular, not modular, not distributive [for a 
more complete discussion see Gerlich (1987b)]. Depending on the o--algebra 
B, this lattice can be atomic and complete. For instance, the Boolean or- 
algebra of the Lebesgue-measurable sets of R I is atomic; if one takes the 
equivalence classes of sets having difference sets with Lebesgue measure 
zero, the o--algebra is not atomic [A~A': ltL(A •A ' )=0] .  Therefore, this 
lattice A • B has all the important general properties usually stated for a 
quantum logic, the lattice of all closed linear subspaces of an infinite- 
dimensional Hilbert space. Of course, this lattice (A • B, ~__, A, v) cannot 
have all the properties given by Piron (1976). If I am right, 0nly the covering 
law is missing (Piron, 1976, p. 24). This law is also missing in the just 
mentioned Lebesgue-o--algebra of the equivalence classes. This lattice 
(A x B, <z, ^, v) is not identical with the corresponding sublattice of the 
closed linear subspaces of a Hilbert space (quantum logic). The problems 
can best be illustrated with the projection-valued measures PA and PB belong- 
ing to canonical conjugate momentum and  position operators. In quantum 
logic the "and"  of PA and PB gives the null space. Therefore, one cannot use 
a probability measure on the quantum logic to define a nontrivial transition 
probability using P(A A B)/P(A). In standard approaches one can add to 
the projectionsl which are the elements of the quantum logic, the positive 
operators PAPBPA to calculate transition probabilities. Our events in the 
condition determine the probability distribution (the states). With respect 
to the events in the decision, q(A, B) is a standard measure-theoretic prob- 
ability distribution; the event A only is an index for this probability distribu- 
tion defined on the Boolean o--algebra B. There is added a new "and,"  
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namely (A, B) between events in the condition and decision. If one combines 
events in the condition, interference can occur. 

These considerations should not mean that, with our axiom (AI) and 
our principle of meaningful comparison (MC), the structure of the lattice 
of all closed linear subspaces of an infinite-dimensional Hilbert space is 
excluded from quantum theory. The following axiom (A2) restricts the 
natural vector spaces of the events to concrete Hilbert spaces. These Hilbert 
spaces have their lattice of closed linear subspaces whether we like designat- 
ing them explicitly or not. In our system of axioms, quantum logic is a 
consequence of (A2) without giving special significance to the lattice proper- 
ties of the closed subspaces. In a quantum logical approach, the Hilbert 
space structure results as a consequence of the plausible introduced lattice 
properties. But our example shows that the essential difficulty is less to 
make plausible the above-mentioned general properties of a lattice that our 
primitive lattice (A • B, ~___, A, v) has already to find plausible arguments 
for the supremum and infimum of nonorthogonal linear subspaces than it 
is. Perhaps our example could illustrate the significance of the covering law 
of quantum logical approaches. 

Apparently the essential point of our approach is to be seen in the 
distinction of the events in the condition and decision. In the representation 
of Ludwig (1976) this distinction is given by separating an experiment into 
preparation and registration (effect) parts. In the representations following 
von Neumann (1932/1968) and (Mackey, 1963; Jauch, 1973; Piron, 1976), 
one can find this distinction between the concepts "states" and "properties, 
propositions, questions." Though these approaches fit our system of axioms 
without great difficulties [for a more explicit discussion see Gerlich (1987b), 
Chapter III], an essential point should not be overlooked. With (A1) it is 
clear where the experimental test of a theoretical model should take place: 
One has to check certain predicted (calculated) probability distributions for 
sets. Taking as an additional fundamental concept the transition probability, 
which is not derived from a probability, the mathematical structure is 
sufficiently general to include the interference effects of quantum mechanical 
probability theories. With this approach the expectation value is a derived 
concept corresponding to the situation in classical probability theory. This 
leads to the introduction of general self-adjoint operators in addition to 
the projectors (Gerlich, 1987b, p. 113). But there is another possibility to 
generalize classical probability theory taking as a fundamental concept the 
expectation value. In conventional quantum theory one can interpret the 
expectation values as certain positive linear functionals on certain sets of 
operators (algebras of operators). Working out such an axiomatic system 
[instead of (A1)], one has to give plausible arguments for these sets of 
operators and the admissible positive linear functionals. As long as these 
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sets of operators contain the projection-valued measures (PV-measures) 
mapping measurable sets (events) of a o--algebra into the projections of a 
Hilbert space in a certain way (Davies, 1976, p. 35; Ludwig, 1976, p. 432; 
Gerlich, 1987b, p. 90), one, at least formally, gets our given "experimental 
windows" of the theory corresponding to (AI) if one describes the depend- 
ence of the events in the condition with the language of the "states": The 
expectation of the projection operator PB in the state p is just the probability 
of the event B. In such an approach one has to introduce the transition 
probabilities as a derived concept. This is possible generalizing the PV- 
measures to positive operator valued measures (POV-measures), at least if 
the space of events in the condition is discrete (Davies, 1976, p. 15; Ludwig, 
1976, p. 432; Gerlich, 1987b, p. 125). When this structure of a PV-measure 
and POV-measure is incorporated in the generalization of the expectation, 
it is in agreement with our system of axioms. But without such a structure 
the statement that probabilities are assigned to events (sets) is meaningless. 

4. THE NATURAL HILBERT SPACES AND THE AXIOM (A2) 

Formulating the axiom (A2), one needs a few technical definitions. 
Assume measures v and p on the or-algebras A and B, respectively, for the 
spaces of events (X, A) in the condition and (Y, B) in the decision. These 
measures should characterize the events that could have a positive probabil- 
ity. This means the following. If  one would like to show with the mathemati- 
cal model that it is impossible to measure a prescribed number but only a 
value in a finite interval with a positive probability, one could use the 
Lebesgue measure on the Lebesgue-o--algebra of the real line. If  one would 
like to fix conventionally that the measured value should be a certain number 
(for instance, n, re), one could take the counting measure for these numbers. 
One could think of the spectra of self-adjoint operators, the discrete spectra 
are characterized by the counting measure, the continuous spectra by the 
Lebesgue measure. The measures v and p are assumed to be o--finite. Appar- 
ently the finite complex linear combinations of the characteristic functions 
of the events with finite measure are a vector space of functions E over the 
field of complex numbers. We denote the quotient space E/N, the subspace 
N spanned by the characteristic functions of sets with measure zero, by the 
vector space of events in the condition or decision (Table I). 

In another way one can formally check whether such an elementary 
function is an element of the natural vector space of events. Let f be a 
nonnegative function defined on the positive real numbers being zero only 
at the origin: 

f(x) > 0 for x > O, f(O) -- 0 
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Table I 

Condition Decision 

X , A , v  Y,B,p 

~= E a'xA,~e ~= E flJz,,E,z 
j ( < o o )  j ( < ~,.~ ) 

v(Ai)<oo, AJc~Ai=~5(i~j) p(BJ)<oo, Bic3BJ=~(i#j) 

For example, such a function is f (x)=  x p or x/(1 + x). The integral 

f f( '~(Y)')#(dY)= f ~s f(lflSl)lB'(y)~(dy) 

= ~, f(IflJU)P (B s) 
J 

is finite iff v/is an element of the natural vector space and zero iff ~, represents 
the null vector. One should pay attention to the integral not being the usual 
~P-norm in the case f (x )=x  p (p> 1), but the pth power of the norm. In 
the case f ( x ) = x  p, 0 < p < l ,  and f ( x ) = l / ( l + x )  it is well known that 
Sf(l~'-~01)p(dx) is a metric for the natural vector spaces. It is a standard 
technique in mathematics to complete these spaces with respect to the metrics 
and to work with the completed spaces. This simplifies calculations analog- 
ously to substituting difference equations by differential equations. By this 
technique no experimentally testable mistakes occur if one uses sensibly 
chosen measures. In the case f (x )  = x2(f(x) = x p, 1 <p # 2) the correspond- 
ing space ~2  (~p) is a Hilbert space (Banach space) with scalar product 

(~1~0) = f ~(y)~o(y)p(dy) 

(norm I[ ~I[ = [S I~IPP (dY)]'/P) �9 We call these spaces natural Hilbert spaces 
(Banach spaces) of the events in the condition or decision. 

Only the characteristic functions of events with finite measures are ele- 
ments of these natural vector spaces. For the characteristic function of an 
event B with not necessarily finite measure, one can define by 

P,,~'I,,= z B ( y ) v ' ( y ) = E  ~,'~J"~ , - ,  ,," 
J 

an idempotent bounded linear operator Ps from the natural vector space 
into itself. In the case of the natural Hilbert space, this operator is self- 
adjoint and a projector. The events with finite measure can therefore be 
represented by an element of the vector space or by a projector. With the 
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function f ,  define 

~t ~, .(n) = f f ( I e ~  ~'l:,l)/~ (dy) 

By a simple calculation one sees that/.t-~, n defines a finite measure on B 
depending on ~ , f ,  p. In the natural Hilbert space, one can write 

pv,,.(B) = <~'lPs~v)= <Ps~'IPB~'> 

Such a finite measure can be normed, 

P~, . (B)  - S f(IPB~I:,I)P (dy) 
f(l~(Y)l)p(dy) 

_ ~ Zs(y)f(I ~v(y)l)p (dy) 

f (l~'( y) l)p ( dy) 

respectively in the natural Hilbert space 

(v'lP~w> 
pv,.(B) - 

Thus we have found a candidate for a formula for the transition probability 
q(A, B) mentioned in (A I ). All that is missing is the dependence on the event 
A in the condi t ion.f  and/1 should be independent of A, thus only ~v remains: 

All these considerations on the natural vector spaces of  the events wouM 
be superfluous if, for certain classes of  ideal measurements, one couM not 
describe the dependence on the event .4 in the condition by linear maps of  the 
natural vector spaces: 

(D) We call a model for a physical experiment a LLlinear (LP-linear, 
unitary) pair if it is possible to write the formula of the transition 
probability in the form 

H~A,.(B) _~ Z.(Y)U(Ivt A(Y)I)H(dY) 
q(A, B ) -  

PfA,.(Y) f f(l~tA(y)l)p(dy) 

with 

resp. 

IFA = L(ZA) 

q(A ,  B) - 
(U(zAIU(zA)) 
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L and U being linear, respectively unitary, maps of the natural vector 
spaces (Hilbert spaces). 

The following axiom restricts these possibilities [Mielnik (1974), how- 
ever, proposed 2W-spaces with p r 2 for generalized quantum theories with 
nonlinear Schr6dinger equations]: 

(A2) General probability distributions are given by (convex linear com- 
binations of) the transition probabilities of a unitary pair. 

In (A2) the convex linear combinations mean the transition from the 
pure states to the mixed states or density operators. Changing the measure 
p is equivalent to allowing in (D) positive functions on A instead of the 
characteristic functions (Gerlich, 1987b, Chapter II.12). 

The axiom (A2) lays down where one has to look for the physical laws," 
The principles for the construction of  the unitary maps U (with the natural 
Hilbert spaces). 

The natural Hilbert spaces have more structure than the vector space 
structure alone; they are integration spaces (Y2-spaces). Therefore, our 
plausibility arguments leading to (A2) should suggest a strengthening taking 
into account this additional structure. In its strict sense this strengthening 
is no longer valid for classical mechanics. It is a formulation of Dirac's 
superposition principle suggested by our system of axioms: 

(AQSP) The unitary maps of the unitary pairs can be written as integral 
transformations of the natural Hilbert spaces of the events. 

The kernel of the integral transformation should be absolutely continu-- 
ous with respect to the measures v and p not being the case for the models 
of classical mechanics. One should note that our formulation of Dirac's 
superposition principle does not contain the assumption that all operators 
of the mathematical model could be written as integral transformations, 
which was criticized by von Neumann in Dirac's representation of the mathe-- 
matical structure of quantum theory (von Neumann, 1932/1968, esp. p. 14). 
Restricting this property to the operators of the unitary pairs, I consider this 
assumption more likely justifiable (Gerlich, 1987b, p. 175). Some remarks 
illustrate the situation given by (A2). 

(a) The gtA are the conventional probability amplitudes and a typical 
unitary pair is given by the energy (with other quantum numbers) and the 
space 

u(z~,~([r  = ~'FAr) 
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IVe,(r)l 2 is the probability density measuring the space coordinates of the 
particle if one knows the system having the eigenvalue of energy E;. One 
can find this formulation already in Hilbert et al. (1927). Usually this formu- 
lation is restricted to the discrete spectrum (Davies, 1976, p. 15; Gerlich, 
1987b, Chapter III.2a). This distinction between the discrete and continuous 
spectra should not occur in an appropriate mathematical model describing 
nature (Gerlich, 1977, Chapter 9). Therefore, I showed how the space could 
be made discrete without producing testably distinct physical statements in 
the sense of (AI) (Gerlich, 1977, p. 105). Mathematically this means the 
Lebesgue measure is to be the infinite approximation of the counting measure 
of equidistant points, the distance being small enough, which is well known 
from the common transition from the Fourier series to the Fourier integral. 
This is just the mathematical connecting link between the spectral theorems 
of M. H. Stone and H. Wintner (Hopf, 1937/1970, p. 18). Our formula for 
q(A, B), in principle, is valid for the continuous spectrum, too. ~'AE are the 
so-called eigenpackets (Hellwig, 1964, p. 144; Gerlich, 1987b, Chapter 
llI.2a). 

(b) In conventional representations of quantum theory, the map U 
describes the change of the "representation." Usually one assumes that, 
given all possible maps U, one could identify all natural Hilbert spaces. 
These identified spaces should be the "abstract" Hilbert space of the physical 
system. This identification produces some problems, the maps U being multi- 
valued because of gauge transformations. The diagram with directly calcula- 
ted U1, U2, U3 need not be commuting (Gerlich, 1987b, p. 117) (Figure 2). 
In the case A = B and Ubeing time dependent, Uis the Feynman propagator; 
for scattering experiments, the S-matrix is a map U in the sense of (A2). 

(c) In classical mechanics the time-dependent U is given by a family of 
one-to-one mappings h, of elements of the set X, the solutions of a system 
of ordinary differential equations: x, = ht(xo), x, are the space and velocity 

. /  
,/ 2. 

Fig. 2 
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coordinates of all particles at time t. Even if Liouville's theorem is not valid, 
the corresponding U, is unitary with respect to a time-independent reference 
measure, setting 

U,(~')[x = [p(x, t)]J/2~,(h~-l(x)) 

p(x, t) is the density of the image measure generated by the flow h, with 
respect to the measure at time zero, symbolically written as (Gerlich, 1987b, 
p. 101) 

I1 (h['(dx) ) = p(x, t)l.to(dx) = l*,,,(dx) 

Progress in the ergodic theory of classical mechanics has been made possible 
by defining one-parameter families of unitary operators with the solutions 
ht of the classical equations of motion and studying formulas of transition 
probabilities of a kind given in (A2). For these investigations, the measure 
structure of the phase space was essentially, showing that implicitly the 
axioms (AI) and (A2) have already been Used for a long time in classical 
mechanics (Hopf, 1937/1970). For these classical models, the formula for 
the transition probability is independent of the selection of the function f. 
Therefore, this dependence on the selection o f f  as f ( x ) = x  2 is typical of 
quantum theory (Gerlich, 1974, 1977, 1987b). 

(d) The formula for q(A, B) given in (A2) can have interference terms 
absent in classical models. Assume A and A' are disjoint; then 
X A v a A ' = X A - } - X A  ' and (U(za) IU(zw))=O,  U being unitary. One gets 

( u(xA ~ A )[PB U(zA ~,a,)) 
q(A w A', B) = 

N N 

/ ( U(ZA')IPoU(ZA)) 
+ 2 Re |  

\ N 

q(A w A', B) = k.,q(A, B) + ~2q(A', B) 

f ( U(Z A')[P BU(t~ A) ) 
+ 2 R e /  \ N 

N= (U(zA)I U(ZA)> + < U(ZA')I U(ZA> 

( u(z A)I w(z~)) ( w(z ~,)[ U(z~,)) Zl -  - - ,  & -  
N N 

0_<2~, 2e<l ,  Aq+X2=l 
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The interference term distinguishes this term from a convex linear combina- 
tion. Because of  Xh,(A)(X)= xA(h? I (X)), h, invertible, one has h,(A) and h,(A') 
are disjoint for disjoint sets A and A'. Thus, 

ZB(x)p(x, t)zA(h[l(x))zA,(h?l(x)) 

= Z B ( x ) p ( x ,  (x) _ t)zh,(A) ~ h,(A') - -  0 

Therefore, the interference term for systems of  classical mechanics is zero. 
The following example shows how general the quantum mechanical formula 
could be. One could think of  the slit experiment or the Stern-Gerlach experi- 
ment (Gerlich, 1977, p. 63; Gerlich, 1983, p. 240): 

A n A ' = ( 3 ,  A w A ' = X ,  B n B ' = ( ~ ,  B u B ' = Y  

p(B)  = p ( B ' )  = v(A) = v(A')= �89 

Defining 

U~(XA) =cos  ~0 ZB+ sin ~p X~'  

U~(ZA.) = - s in  ~0Zs+cos ~oxs,  

one gets 

In 

q(A, B) = cos 2 r q(A', B) = sin 2 q~, q(A, B') = sin 2 (p 

B) = 5 -  5 sin 2 ~0 q( A Lp A', ~ 1 

is the interference term. Setting r one gets 

convex linear combination of  q(A, B) and q(A', B) 

the second term 
q(A L) A', B) = O. 

An arbitrary 
results in 

,~,q(A, B) + s B) = s cos 2 a '+ s sin 2 zc _ 1 
4 4 2 

which surely is positive. 
If  one tries "~o choose suitable s and s to get q(A L~ A', B), namely 

s cos 2 ~p+(1 - s  sin 2 ~0=�89 - s i n  2q)) 

)t~ should be given by ,~ = � 8 9  2(p). Thus, only for 0<[~0[<zr/8 does 
one get for s a value between 0 and 1. Therefore, for U~ with ~o> x /8  one 
cannot find a s between 0 and 1 such that q(A u A', B) can be written as a 
convex linear combination of  q(A, B) and q(A', B). 

Hence ( CL) is not generally valid for the quantum mechanical transition 
probabilities. Note that already for this simplest example one must perform 
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at least three experiments testing the interference term. Therefore, in reality, 
the two-slit experiment is three experiments (Gerlich, 1981; Gerlich, 1987b, 
p. 145). 

The important point is that one can use one formula for the transition 
probability. If one uses different formulas for each experiment, no difficulties 
with (CL) can occur and therefore hidden variables theories are always 
possible [like those defined by Gudder (1970)]. 

5. THE TIME DEPENDENCE OF UNITARY PAIRS 
AND AXIOM (A3) 

Having in mind classical mechanics, one sees that the original physical 
laws lie in the time dependence of the transition probability and, because of 
(A2), in the time dependence of the U of the unitary pair. The simplest 
differential equation for U, is a linear differential equation, making sure that 
all Ut are unitary: 

(A3) The time dependence of unitary pairs is given by 

ih OU'= H, o U, 
& 

Ht are (essential) self-adjoint operators defined on the natural Hilbert 
space in the decision. 

Planck's constant h is not essential in this axiom; one could have 
incorporated it in H,. As this equation is written just in quantum mechanics 
in this form, whereas in classical mechanics it is often not mentioned, 1 left 
Planck's constant on the left side together with the time derivative. The flows 
of classical mechanics generated by the acceleration field br(r, v) have as 
operators 

i h 8b~(r, v) ihv~ ~ ihb~(r, v) 8 
H , = - ~  - 8v k & ~ -  8v ~ 

One sees that Planck's constant and the imaginary unit drop out of the time 
evolution equation given in (A3). The factor �89 in the first term depends on 
the function f ( x ) - - x  2 in (A2). Taking for classical mechanics the natural 
Banach spaces S p with 1 _<p r  we find that the formulas for the transition 
probabilities would not change, but for a norm-preserving operator of the 
time evolution, in the first term one has to change the factor �89 into 1/p 
(Gerlich, 1991, p. 48; Gerlich, 1987b, pp. 102, 234, 239). 



I 122 Gerlich 

In this case, for the corresponding probability density 

p, = ( Ilt,~t,)P/2, 11 t, = N, Ilt o 

one gets the generalized Liouville equation 

0; ,+  O + ~ (b~p,) = 0 (vkP ,) 

which is a continuity equation independent of p. This example shows that 
the use of the A~ with p 5 2  alone does not force the time evolution 
equation to be nonlinear. In Mielnik (1974) the ADP-spaces with p-~2 are a 
consequence of the special form of the nonlinear Schr6dinger equations 
proposed by him. 

In this context one could give an answer to the often discussed question 
of why a real Hilbert space is not sufficient in quantum theory. For classical 
mechanics the imaginary unit i and Planck's constant h drop out of the 
equation describing the time evolution. The time evolution is of such a 
special form that one could use the generalized Liouville equation instead 
of the equation given in (A3). But in quantum mechanics, the imaginary 
unit does not drop out of the equation describing the time evolution. The 
continuity equation for the probability density is no longer equivalent to the 
equation of (A3). With real vector spaces, the formulation of the time evolu- 
tion operators H of quantum mechanical systems would be much more 
complicated, introducing an R2-valued ~2-space or a direct sum of two R ~- 
valued A~ which could be written as Cl-valued A~ 

6. AXIOMS OF MECHANICS 

The last axioms now following treat the quantum mechanical and class- 
ical mechanical description of mass points separately. Like the first Newton- 
Jan axiom, the first typically quantum mechanical axiom describes a free 
mass point: 

(AQS 1) The space of events of the space measurements of a free particle 
is R 3 with the Lebesgue measure #~. on the Lebesgue or-algebra AL. 
The self-adjoint operator of the time evolution for this system is given 
by 

h 2 c~ 2 0 2 0 2 
H = - - - A ,  - - + - -  

2m A =~x  2 +Oy 2 ~z 2 

defined on a suitable dense linear subspace of the natural Hilbert 
space A~ R3). 
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The corresponding axiom of classical mechanics of mass points reads 
as follows. 

(AMN1) The space of events of the space and velocity measurements 
of a free particle is R 6 with the Lebesgue measure/tL on the Lebesgue 
o--algebra AL. The self-adjoint operator of the time evolution is given 
by 

0 # 0 

defined on a suitable dense linear subspace of the natural Hilbert 
space ~2(/IL, R6). 

With the gauge technique first introduced by Weyl (1931, 1977) one can 
find an Ansatz for a particle in an external electromagnetic field. A gauge 
transformation in the Hilbert space in the decision 

Ue~,l, = ei~'") ~',(r), aft,  t ) ~ R  ~ 

does not change the transition probabilities. This results in a class of equiva- 
lent operators He = UE o H o U* with external fields describing the same time 
evolution of the transition probability (Gerlich, 1987b, p. 188). One gets an 
inequivalent operator, substituting the gauge fields by A(1)= (Al -  V) 

~ 1 ( - i l i V -  A). ( - i ~ V -  A) + V HE = 2-m 

if in four-dimensional space-time the field A (1) has a nonvanishing alternat- 
ing differential F(2) = V A A(I ) r 

One can identify this alternating differential F(2) with the electromag- 
netic field; then the latter equation F(2) = V ̂  A (I) is the homogeneous part 
of Maxwell's equations. This suggests the following axiom : 

(AQS2) The operator of the time evolution of a particle of charge Ze 

and mass m in an external electromagnetic field with the potential 
(A, - V )  is given by 

t 
H = - -  ( - i h V  - ZeA)  �9 ( - i h V  - Z e A )  + Ze  V 

2m 

defined on a suitable dense linear subspace of the natural Hilbert 
space defined in (AQSI) (with the same space of events). 

One can use the gauge technique together with the axiom (AMN1) of 
classical mechanics. Surprisingly, one does not get the analogous axiom 
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(AMN2)  o f  classical mechanics, showing that this axiom shouM not be inter- 
preted as an approximation of  (A QS2) : 

(AMN2) The operator of the time evolution in an external acceleration 
field is given by 

h ~b~(r, v) itiv k ~ -  ilib~(r, v) 0 
H =  - i  2 Ov k " Ov ~ 

defined on a suitable dense linear subspace of the natural Hilbert 
space defined in (AMN1) (with the same space of events). 

The first Newtonian axiom defines space-time in the mathematical model on 
which the force fields of the second Newtonian axiom are defined. Similarly, 
the axioms (AQS1) and (AMN1) define the spaces on which the operators 
of (AQS2) and (AMN2) with external fields are defined. The axioms 
(AMN1) and (AMN2) remain unchanged for a nonradiating relativistic 
electron substituting the acceleration field 

_m~0(1 ~)2"~1/2f 1 E + v x B )  b= /E, vv. 

E and B are the external electromagnetic fields. For a radiating electron, the 
space of events has to be enlarged, as such a system is commonly described 
by differential equations of third order for the space coordinates. The rela- 
tivistic form of the corresponding quantum mechanical axioms (Dirac's 
equation) changes significantly with respect to (AQS1) and (AQS2), 
formally being more like the classical mechanical form: 

(AQD1) The space of events of the space measurements of a free elec- 
tron is R 3 with the Lebesgue measure/~L on the Lebesgue-o--algebra 
AL. The operator of the time evolution for this system is given by 

H =  moe2 fl - icha . V 

defined on a suitable dense linear subspace of the C4-valued natural 
Hilbert space ~2(p r ,  R 3, C 4) being isomorphic to the C2-valued natu- 
ral Hilbert space 

(PAP is the counting measure on { - h / 2 ,  h/2} ) and the corresponding 
complex-valued natural Hilbert space [for mathematical details see 
Gerlich (1987b)]. 
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Applying the gauge technique of Weyl, one gets an Ansatz for an electron 
in an external electromagnetic field: 

(AQD2) The operator of the time evolution of an electron in an exter- 
nal electromagnetic field (A, - V )  is given by 

H = m o c 2  f l  - -  i c h a  " V + e c a  " A - e V 

defined on a suitable dense linear subspace of the natural Hilbert 
space defined in (AQD1) (with the same space of events). 

These axioms treat particles in an external field. Of course one cannot 
make much physics with such systems. In the next step one should describe 
interacting particles. Considering classical mechanics, one would like to 
formulate (AMN2) at once for systems of interacting particles formally only 
changing the dimension of the space of events. In the case of Schr6dinger's 
equation (AQS2) this would also be possible for simple interactions with 
some technical effort (fermions, bosons). In both cases one has some 
difficulties with the relativistic form. Therefore, I would like to show how 
this step can be done naturally in the present approach, when one takes into 
account the historical development of physics. 

Methodologically, in the development of physics, the first important 
step was Newton's discovery that the (inertial) masses were the sources of 
the gravitation field leading to the Newtonian gravitational interaction of 
mass points. The next step was describing the constraints analytically 
(d'Alembert's, Gauss's principle). Not considering the spaces of events, 
formally, the form of the second Newtonian axiom (AMN2) remains 
unchanged. This changes when electric currents are interpreted as moving 
electric particles with magnetic interaction. These forces do not act in the 
direction of the two particles and depend on the velocities [Clausius potentia~ 
(Clausius, 1879)]. With his hypothesis of electrons, H. A. Lorentz added a 
mechanical velocity of particles to Maxwell's theory and could explain many 
phenomena of optics, but new difficulties arose (Poincar6, 1900): The equa- 
tions were no longer relativistic using Galilei's transformations. Second, the 
third Newtonian taw was no longer valid. These things required the repair 
of the famous ether; Lorentz had to invent many hypotheses to save his 
electron theory until he succeeded in finding a relativistic form with the 
Lorentz transformation (Lorentz, 1904) named by Poincar6 (1905, 1906). 
In the course of time the third Newtonian axiom was no longer taken too 
seriously, but the radiation of point particles as constituents of atoms 
remained a problem. 

Usually one describes the radiating electron with differential equations 
of third order. The new formulation of (AMN2) for such equations of 
motion can be given without special difficulties. But the problem of the 
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stability of nonradiating atoms was solved in another way. Schr6dinger 
(1926) noticed when he published his time-dependent Schr6dinger equation 
[in our formulation this is contained in the axioms (AQS1) and (AQS2)], 
that for the density (Gewichtsfunktion) 

p, = ~v,~',, ~, = U,u/0 

one has a continuity equation in common three-dimensional space integrat- 
ing all but one of the particle variables. Taking the current density corre- 
sponding to this continuity equation as a source of the electromagnetic field, 
it was understandable why the atoms were not radiating in the ground state: 
the charge density became independent of time. Therefore, Schr6dinger (1926) 
talks about "a certain return to electrostatic and magnetostatic models of 
atoms." Radiation of an atom is nothing else but an electromagnetic field 
at a distance produced by the atom. Therefore, it is clear that the current 
density calculated from ~v, should be the source of the electromagnetic fields. 

This is in agreement with our formulation of the axioms. One can derive 
from each axiom (AQS2), (AMN2), and (AQD2) continuity equations 
[generalized Liouville equations (Gerlich, 1987b, pp. 148, 195, 318)]. As is 
known, the inhomogeneous part of Maxwell's equations is equivalent to a 
continuity equation, disregarding differentiability conditions. From a logical 
standpoint, therefore, in this way, the ~v-functions should be the sources of 
the electromagnetic interactions (as it was analogously with the gravitation). 
Along this line Barut and Kraus (1976, 1977) worked out an electromagnetic 
theory of elementary particles. If one looks upon the v,-function as a mathe- 
matical device to produce the electromagnetic fields, it does at a first glance 
seem to be in contradiction to our axiom (A2), where the ~,-functions are a 
mathematical device to calculate transition probabilities. In the sense of 
axiom (A2), ~',~, is the probability density measuring the space coordinates 
of an electron. But these interpretations can easily be connected to answer 
the question of when is it possible to measure a probability distribution of 
the space coordinates of particles. This is impossible for particles interacting 
with nothing (recall the search for neutrinos!). Only if ~,(r) has something 
to do with the interaction of the particle, can one hope to find with repeated 
measurements a frequency distribution for interaction processes (a density 
curve). In this case the black interaction point has to be much smaller 
than the range where ~,,~, is essentially unequal to zero if the probability 
density should be testable by experiments. The probability interpretation 
necessarily demands that in some way the interaction can be calculated with 
y-functions. 

Thus, stressing the analogous historical development of classical and 
quantum mechanics, one should not overlook the important difference in 
the fact that in classical mechanics the sources of the interactions are 
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described with the space and velocity coordinates, not with the g-functions. 
This is a consequence of the difference between the axioms (AQ) and (AM). 

7. GENERALIZED QUANTUM THEORIES 

Systems of axioms should give hints for possible generalizations and 
appreciable modifications of a theory. If I try to show such modifications, 
this is of course rather subjective and speculative. In some sense the given 
generalizations are necessary. Therefore, they can serve to indicate the criti- 
cal points of our given system of axioms. 

The essential difference from other systems of axioms of quantum 
theory known to me is the structure of the events in the condition in (A1). 
Together with (A2), this is a generalization of the projection postulate valid 
also for the continuous spectrum of the events in the condition, respectively 
a more concrete interpretation of the conventional formula of the transition 
probability of quantum theory I(~b[~,)l 2. The change of the representation, 
the S-matrix theory, and conventional classical statistical mechanics fit this 
generalized formulation very well. This is no longer true if one could only 
describe discrete events in the condition with this formula. Of course, this 
does not mean that such a structure must be listed in a system of axioms. 

But if one takes this structure of the events in the condition seriously, 
one should incorporate it with all mathematical consequences. One such 
consequence would be taking an equivalent finite measure on the events in 
the condition (with the same sets of measure zero) instead of only cr-finite 
measures. Thus, all measurable sets (events) could be taken as elements of 
the natural vector spaces and could be used in the formula of (A2) for 
U(ZA). If the measure v is not finite, for finite v(A), the characteristic 
function for the complement of A is not an element of the natural vector 
space. Introducing finite measures for the events in the condition changes 
the formula of the unitary pair (Gerlich, 1987b, p. 229). Making convergent 
the partition function of the ideal hydrogen system, such a manipulation 
with the a priori measure is already in use (Gerlich, 1977, p. 92). In this 
sense such a generalization does not seem to be serious. But with our formula 
of unitary pairs, not only are counting measures admitted for the events in 
the condition, but also the Lebesgue measure for space events. Substituting 
the Lebesgue measure by an equivalent finite measure, one gets problems 
describing the homogeneity of the space. 

A schematic representation of our system of axioms (Scheme I) 
(Gerlich, 1987a) suggests combining the columns of the last two lines in 
a single formulation. This was successfully done with the Newtonian and 
Schr6dinger axioms (Gerlich, 1987b, p. 188; Gerlich, 1987a; Dietert, 1990), 
taking the spaces of events from (AMN1) also for (AQS1/2) and adding the 
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(AI) 
(transition probability) 

I 
(A2) 

(unitary pair) 

I 
(Aa) 

(general t~e dependent Sehr~diger equation) 

(AMN1) (AQSl) (AQDI) 

(free Newton particle) (free Schr{Sdinger particle) (free Direc particle) 

I I I 
(AMN2) (AQS2) (AQD2) 

(Newton particle ( Sch_,~Sdtinger particle (Dirac particle 

in external fields) in external fields) in external fields) 

Scheme I 

operators H with small modifications. One gets a generalization of quantum 
mechanics containing classical mechanics, or vice versa a generalization of 
classical mechanics containing quantum mechanics. The physical conse- 
quences are studied in Dietert (1990). 
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